## Marker Board Notes for September 30, 2020

Takeaways from Lecture 3 Part 2 on FIR Filters for Linear Time-Invariant (LTI) Systems

- Linear Phase
- Important in some applications
- Same delay from input to output for all frequencies
- Filter must be FIR and have even or odd symmetry about midpoint of impulse response
- Fundamental Theorem
- LTI systems do not generate new frequencies
- Any frequencies on the output had to be present in the input signal
imageRampsCosines.m image processing demonstration
- $512 \times 512$ images with each pixel being an eight-bit unsigned value [0, 255]
- Horizontal frequency increased from 0 to $\pi$ by decreasing the period $L$
- For a cosine signal $\cos \left(\omega_{0} n\right)$, discrete-time frequency is $\omega_{0}=2 \pi / L$ in rad/sample
- Low-frequency regions of the image have constant or slowly-varying amplitude values
- High-frequency regions correspond to fast alternation between min and max values
- Edges/texture have significant high-frequency content and some low-frequency content
- Consider an edge in a row of the image: $\operatorname{row}[n]=255 u\left[n-n_{0}\right]$. It has a sudden jump in value from 0 to 255 at $n=n_{0}$. This has high-frequency and some low-frequency content


## Lecture Slide 5-18 Averaging Filter (LTI System)

Normalized: $y_{1}[n]=1 / 2 x[n]+1 / 2 x[n-1]$. 2 multiplications and 1 additions per output sample. Unnormalized: $y_{2}[n]=x[n]+x[n-1]$. 1 addition per output sample. Lower comp. complexity. Impulse responses $h_{1}[n]=1 / 2 \delta[n]+1 / 2 \delta[n-1]$ and $h_{2}[n]=\delta[n]+\delta[n-1]=2 h_{1}[n]$ :

$$
H_{2}(\omega)=2 H_{1}(\omega)=2\left|H_{1}(\omega)\right| e^{j<H_{1}(\omega)}=\left(2\left|H_{1}(\omega)\right|\right) e^{j<H_{1}(\omega)}
$$

- No difference in the phase responses: $<H_{2}(\omega)=\prec H_{1}(\omega)$
- Magnitude response (in linear units) scaled by constant; no change in shape-still lowpass


## Lecture Slide 5-19

Rewrite $j$ term in the frequency response as a phase of $\pi / 2: e^{j \frac{\pi}{2}}=\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}=0+j=j$

## Lecture Slide 5-20

Rewrite the frequency response for the first-order difference filter (from lecture slide 5-19)

$$
H(\omega)=\sin \left(\frac{\omega}{2}\right) e^{j\left(\frac{\pi}{2}-\frac{\omega}{2}\right)}
$$

When $\omega$ is in $[0, \pi], H(\omega)$ is already in magnitude-phase form because $\sin (\omega / 2)$ is non-negative. When $\omega$ is in $(-\pi, 0), \sin (\omega / 2)$ is negative. We can negate both terms and replace -1 with $e^{-j \pi}$ :

$$
\left(-\sin \left(\frac{\omega}{2}\right)\right)\left(-e^{j\left(\frac{\pi}{2}-\frac{\omega}{2}\right)}\right)=\left(-\sin \left(\frac{\omega}{2}\right)\right)\left(e^{-j \pi} e^{j\left(\frac{\pi}{2}-\frac{\omega}{2}\right)}\right)=\left(-\sin \left(\frac{\omega}{2}\right)\right) e^{j\left(-\frac{\pi}{2}-\frac{\omega}{2}\right)}
$$

Here's the resulting magnitude-phase form, which is plotted on lecture slide 5-20:

$$
H(\omega)=\left[\begin{array}{cc}
\left(-\sin \left(\frac{\omega}{2}\right)\right) e^{j\left(-\frac{\pi}{2}-\frac{\omega}{2}\right)} & \text { for } \omega \epsilon(-\pi, 0) \\
\sin \left(\frac{\omega}{2}\right) e^{j\left(\frac{\pi}{2}-\frac{\omega}{2}\right)} & \text { for } \omega \in[0, \pi]
\end{array}\right.
$$

